首页> 外文OA文献 >Ribbon Graphs, Quadratic Differentials on Riemann Surfaces, and Algebraic Curves Defined over $\bar Q$
【2h】

Ribbon Graphs, Quadratic Differentials on Riemann Surfaces, and Algebraic Curves Defined over $\bar Q$

机译:带状图,黎曼曲面上的二次微分和   代数曲线定义在$ \ bar Q $

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well known that there is a bijective correspondence between metricribbon graphs and compact Riemann surfaces with meromorphic Strebeldifferentials. In this article, it is proved that Grothendieck's correspondencebetween dessins d'enfants and Belyi morphisms is a special case of thiscorrespondence. For a metric ribbon graph with edge length 1, an algebraiccurve over $\bar Q$ and a Strebel differential on it is constructed. It is alsoshown that the critical trajectories of the measured foliation that isdetermined by the Strebel differential recover the original metric ribbongraph. Conversely, for every Belyi morphism, a unique Strebel differential isconstructed such that the critical leaves of the measured foliation itdetermines form a metric ribbon graph of edge length 1, which coincides withthe corresponding dessin d'enfant.
机译:众所周知,度量带图和具有亚纯Strebel微分的紧Riemann曲面之间存在双射对应。本文证明,dessins d'enfants与Belyi射影之间的Grothendieck对应是这种对应的特例。对于边长为1的度量带状图,将构造$ \ bar Q $上的代数曲线,并在其上构建Strebel微分。还表明,由Strebel微分确定的测得叶面的临界轨迹可以恢复原始的度量带状图。相反,对于每个Belyi射影,都将构造一个唯一的Strebel微分,以使所测叶面的临界叶确定其边缘长度为1的度量带状图,该图与相应的dessin d'enfant重合。

著录项

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号